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Direct numerical solutions of the incompressible Navier–Stokes equations have been
obtained under the Boussinesq approximation for the temporal evolution of a turbu-
lent jet-like flow subjected to off-source volumetric heating, of the kind that occurs in
a cloud due to latent heat release on condensation of water vapour. The results show
good qualitative agreement with available experimental data on spatially growing jets.
Thus, heating accelerates the flow and arrests jet growth; and turbulence velocities
increase with heating but not as rapidly as mean velocities, so normalized intensities
drop. It is shown that the baroclinic torque resulting from the heating enhances the
vorticity dramatically in all three directions, with a preferential amplification at the
higher wavenumbers that results in a rich fine structure at later times in the evolution
of the jet. Streamwise vortex pairs, rendered stronger by mean flow acceleration, ap-
pear to be responsible for large expulsive motions at certain transverse cross-sections
in the ambient fluid near the heated flow; together with the disruption of the toroidal
component of the coherent vorticity achieved by heating, this results in an entraining
velocity field that is qualitatively different from that around unheated turbulent jets.
This mechanism may provide a plausible explanation for the experimentally observed
drop in entrainment with off-source heating.

1. Introduction
There are several reasons for undertaking a study of turbulent flows into which heat

can be released volumetrically. For example, heat release occurs in combusting flows
due to chemical reactions; several investigations of reacting flows, both experimental
(Dimotakis 1991; Broadwell & Mungal 1991) and computational (involving direct
numerical solution of the Navier–Stokes equations: see McMurtry et al. 1986; Mathew
& Basu 1998), have been reported in recent years. In flows such as diffusion flames,
entrainment and mixing lead to chemical reaction, which results in heat release, which
in turn may affect both entrainment and mixing, i.e. the connections are tightly
coupled, and cyclic. To understand the effect of heat release specifically on mixing,
however, it is desirable to study a flow situation in which controlled amounts of
heat can be injected into the flow, without any connection to chemical reaction. In
particular, here we are interested in investigating flow situations where only negligible
changes occur in density and transport parameters (such as viscosity) due to heating
– thus considerably simplifying the equations governing the flow. Because of this
simplification, the results obtained here, while not applicable in detail to combusting
flows, are still believed to describe one mechanism that may be of importance to a
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wide class of flows that occur in nature as well as technology, where the buoyancy
force plays a significant role.

Such a flow situation has direct relevance to some geophysical problems, in par-
ticular the development of a cloud. Rising humid air in the atmosphere cools by
adiabatic expansion, and the condensation of water vapour which occurs as a con-
sequence above a certain height releases significant quantities of latent heat. This
heat release could exert a strong influence on the flow. This situation acquires special
interest because it has been realized experimentally (Elavarasan et al. 1995; Bhat &
Narasimha 1996) by ohmic heating of a jet of electrically conducting liquid. These
experiments provide data that can serve as a source of validation for the simulations
that we shall report here, and we shall be able to study such key variables as vorticity
which are hard to measure experimentally but are easily derived from numerical
solutions. In the experiments a controlled amount of heat is injected volumetrically
into the region between two selected streamwise stations in the far field of a spatially
evolving jet. The results show that heating accelerates the flow and inhibits jet growth;
for very large heating, growth may cease altogether or even become negative. Heating
is also found to increase the turbulence velocities, but not as rapidly as the mean
velocity, so normalized intensities drop. The inhibition of jet growth is such that there
may be a reduction in overall entrainment for sufficiently large heat injection. There
are also indications of disruption of structures in the flow. Rather similar observa-
tions have recently been reported for a plume subjected to off-source heating as well
(Venkatakrishnan et al. 1998). As we shall see, the present simulations reproduce
qualitatively many of the features seen in the laboratory experiments.

The jet flow with off-source volumetric heating should only be considered a ‘cartoon’
(in the sense of Corcos 1988) for the flow in a cloud, as has been explained in
detail in Bhat & Narasimha (1996). A cloud is of course a complex flow, involving
microphysics, thermodynamics, multiple phases, etc.; furthermore the amount of heat
released itself depends on other thermal and fluid flow parameters of the cloud.
It is not our objective to make a realistic simulation that fully accounts for all
these factors. Instead we concentrate on the effects of heat release on the structure
of the turbulence. For this purpose a satisfactory idealization is provided by the
Boussinesq approximation, whose applicability to fluid-dynamical problems of the
kind considered here has been established in various earlier studies (e.g. Turner 1973;
Tritton 1988).

Several direct numerical simulations of the early stages of evolution of circular,
unheated jet flow have been reported previously (e.g. Melander, Hussain & Basu
1991; Verzicco & Orlandi 1994; Chen, Lienau & Kollmann 1995). Our interest here,
with a view to atmospheric application (where condensation levels are effectively in
the far field of a rising plume), is in studying the effect of heat release when the flow
has attained self-similarity. This becomes computationally expensive to handle in a
spatial simulation, so we have adopted a temporal spectral solution technique. A code
that has earlier been used extensively for studying (unheated) jets (Basu, Narasimha
& Sinha 1992; Mathew & Basu 1997) has been modified for this purpose.

The plan of the paper is as follows. In § 2, we describe the problem, the governing
equations, and the initial and boundary conditions. In § 3, the spectral method of
solution used here is described in detail, along with issues concerning validation
of the numerical scheme and the computer code. The results for the unheated
jet are presented in § 4, focusing especially on its similarity behaviour. In § 5, we
study the effects of heating on jet evolution: specifically examined are the effects
of variation of the amount of heating, and different heat injection profiles. In § 6
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Figure 1. Schematics of (a) laboratory setup for a spatially developing jet, (b) the temporal
simulation adopted in the present study.

and § 7 respectively, we look at how heating alters the vorticity distribution and the
entrainment characteristics in a jet. Finally, some conclusions are presented in § 8.

2. Statement of the problem
The laboratory experiments mentioned above involve actual spatial development of

a turbulent liquid jet issuing from a nozzle into a tank filled with the same liquid, along
with volumetric heat addition over a certain streamwise distance after a self-similar
state has been reached (see figure 1a). Computing such flows accurately, so that all
the relevant length and time scales are captured, can be extremely demanding on
both computer time and memory. Therefore, it was decided to compute a temporal
analogue of the problem (figure 1b), where one studies the time-evolution of a
cylindrical mixing layer inside a computational domain which is periodic in all the
three space directions. After self-similarity is obtained in the computed mean velocity
and turbulent stresses, heat is injected into the region occupied by the jet fluid,
beginning at time tho. The heat-injection is switched off at time tho + th, where the
duration of the heating th is typically of the order of one or more eddy-turnover times.
Thus, while in the laboratory heat is injected at all times into a limited streamwise
region along the jet, in the present temporal simulation we inject heat over a limited
time duration into the entire flow.

The advantage of using a periodic domain is the ease with which spectral methods
based on the fast Fourier transform (FFT) can be used to compute the flow reasonably
fast and with high accuracy; the main drawback is that no rigorously quantitative
comparison with the actual laboratory data can be made. It is important, however, to
note that the periodic boundary conditions produce a flow that, while not identical
with the spatially developing jet, nevertheless closely resembles it. Thus, although we
capture three-dimensional structures of the kind known to occur in a laboratory jet,
such events as ring formation and pairing now occur over the temporal evolution of
the flow, and not in a particular region in space. The calculations are therefore not
strictly representative of the evolution of either an axisymmetric jet or wake, but of a
cylindrical (or tubular) mixing layer. Because of structural similarities with the early
stages of a laboratory jet (see, for example, Liepmann & Gharib 1992), it should
therefore be possible to form ideas about the laboratory flow from such a simulation.
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In what follows, we will call the simulated flow a ‘jet’ for the sake of convenience. We
return to this issue later in § 4.3.

2.1. Governing equations

In the laboratory experiments mentioned above, as well as in the atmosphere, the
flow may be considered to be nearly incompressible as the density changes due to
heating are small. Furthermore, it can be assumed that temperature variations are
introduced by some process independent of the flow dynamics. Since the Lagrangian
acceleration of fluid particles in the jet is very small compared to the acceleration due
to gravity g, we can assume that the Boussinesq approximation is valid – that is, the
effect of density changes in the flow (because of heating) appears only as a buoyancy
term in the momentum equation, and does not significantly affect the inertial terms
or the values of the transport parameters (see Turner 1973 for a critical discussion of
this approximation). The heat injected into the flow appears as a source term in the
energy equation, giving us the governing equations for the problem as

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u− gαT , (2.2)

∂T

∂t
+ (u · ∇)T = κ∇2T +

J

ρ cp
, (2.3)

where u is the velocity vector, ρ the density of the fluid, p the pressure, ν the
kinematic viscosity of the fluid, α the coefficient of thermal expansion, T the change
in temperature above ambient, κ the thermal diffusivity, J the rate of heat addition
per unit volume, and cp the specific heat at constant pressure.

While the acceleration due to gravity g acts vertically downwards, in the present
computations we use a Cartesian coordinate system whose z-axis is positive upwards.
Therefore g = −gez , where ez is the unit vector along the positive z-direction. In the
case of the unheated jet T = 0, and we need to solve the incompressible Navier–
Stokes equations, which are essentially the equations (2.1) and (2.2), with the last
(buoyancy) term omitted in the latter.

2.2. Non-dimensionalization

Equations (2.1)–(2.3) respectively express conservation of mass, momentum and en-
ergy. To non-dimensionalize these equations, we use the initial diameter d0 and the
initial centreline velocity U0 of the cylindrical mixing layer, and a characteristic
temperature difference T0 (defined below) as scales. The nature of the continuity
equation (2.1) does not change upon non-dimensionalization. Thus, using an asterisk
for non-dimensional variables, we get

∇∗ · u∗ = 0. (2.4)

Recalling that the heat is injected over the duration th into the flow, we define T0

as the net temperature change that would result if the total heat Jth were injected
uniformly over the unit volume: T0 = Jth/ρcp. The non-dimensional energy equation
(2.3) then becomes

∂T ∗

∂t∗
+ (u∗ · ∇∗)T ∗ =

1

Re Pr
∇∗2T ∗ +H(t∗)

d0

U0th
g(r∗), (2.5)
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where Re = U0d0/ν is the Reynolds number, Pr = ν/κ is the Prandtl number, and

H(t∗) = 1 for t∗h0 < t∗ < t∗h0 + t∗h
= 0 otherwise,

and g(r∗) is a prescribed function that determines the radial distribution of heat
injected into the flow.

Similarly non-dimensionalizing the momentum equation (2.2), we get

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ +H ′(t∗) GChT ∗ez, (2.6)

where

H ′(t∗) = 1 for t∗ > t∗ho,

= 0 for t∗ < t∗ho,
and

G ≡ αg

ρcp

Jdh
2

U3
h

(2.7)

is a non-dimensional heat release parameter; here dh and Uh are respectively some
appropriate length and velocity scales in the heat injection region (such as the local
half-width and centreline velocity of the jet at the start of heat injection). The other
non-dimensional parameter in (2.6) is

Ch ≡ Uhth

dh

d0

dh

(
Uh

U0

)2

, (2.8)

whose value will remain constant during the present study. (This corresponds to
fixing the spatial region over which heat is added in the laboratory jet.) Note that the
parameter G used here is the strict analogue of that introduced by Bhat & Narasimha
(1996), differing from their definition only because of the temporal nature of the
present problem. It is rather like a bulk Richardson number, being a measure of the
ratio of buoyancy to inertial forces.

Since G and Ch appear only as a product in equation (2.6), it is appropriate to
introduce G∗ = GCh as the relevant parameter governing heat release, and we will use
G∗ in place of G and Ch from now onwards.

The governing parameters for this flow are therefore Re, Pr and G∗, along with the
duration t∗h and distribution g(r∗) of the heat injection term in the energy equation
(2.5).

2.3. Initial and boundary conditions

The equations are solved here in a Cartesian coordinate system x = (x, y, z) =
(x1, x2, x3). However, in order to facilitate the description of initial conditions relevant
to the (temporally-evolving) cylindrical mixing layer in question, we shall also use
a cylindrical coordinate system (r, θ, z) such that x = r cos θ, y = r sin θ. The corre-
sponding velocities are (u, v, w) and (ur, uθ, w) in the Cartesian and cylindrical systems
respectively.

The initial conditions are chosen to simulate a flow that is similar (in a temporal
sense) to that of a jet issuing from a round nozzle. Thus, we have a tubular shear
layer along the vertical or z-direction at time t = 0. The streamwise or w-velocity has
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a top-hat profile with a tan-hyperbolic shear layer:

w = 1, ∀ r 6 r0 − δ/2
= 0, ∀ r > r0 + δ/2

=
1

2

(
1− tanh

r − r0
2θ0

)
, ∀ r0 − δ/2 < r < r0 + δ/2, (2.9)

where δ is the characteristic width of the shear layer. Here r0 is the initial mean
radius of the shear layer, θ0 is the initial momentum thickness, and uθ and ur are
assumed to be zero everywhere. We impose a small perturbation on this shear layer
corresponding to an increment in ur given by

∆ur = f(r)

[∑
j

aj sin

(
2πz

λj
+ ψj

)
+ aθ

∑
l

sin (lθ + sl)

]
, (2.10)

with prescribed amplitudes aj and aθ , streamwise wavelength λj and phases ψj and
sl; f(r) is the filtering function

f(r) = exp

[
− 2

(
r − r0
δ

)2]
, (2.11)

which helps to contain the initial perturbations within the shear layer.
Even though our focus in this study is primarily on the late times after the jet

has developed self-similarity, we nevertheless compute through the instability and
transition phases of the jet; this approach has been taken here because it is difficult
to prescribe an ‘initial’ far-field condition that contains the representative vortical
structures which are so essential to the points being made here. Specifying mean and
fluctuating velocities as starting conditions in the far field (as is usually done) will not
help the present simulations, since we are also interested in the structural details of
the flow. For reasons already discussed, heat addition takes place only at later times
when the computed mean velocity and Reynolds stresses have achieved self-similarity.
The temperature everywhere is uniformly zero till the heat addition commences. The
details of heat addition are discussed later in connection with the results in § 5.

The boundary conditions are taken to be periodic in each space direction for all
primary variables. (This facilitates the use of Fourier spectral schemes, and hence
FFTs.) The size of the computational domain (one periodic cubical box of dimension
L× L× L) is 4 times the diameter d0 of the tubular shear layer at t = 0. Thus,

u(x, t) = u(x+ Lei, t), p(x, t) = p(x+ Lei, t),

T (x, t) = T (x+ Lei, t), i = 1, 2, 3.

}
(2.12)

3. Method of solution
Equations (2.5)–(2.6) are solved along with the continuity equation (2.4) in a

Cartesian coordinate system using the Fourier Galerkin (spectral) technique. The
basic philosophy of the scheme is similar to that of Orszag (1971) for direct solution
of the incompressible Navier–Stokes equations. No de-aliasing is used here, so the
scheme may be considered to be ‘pseudospectral’.

We now drop the asterisk (except on G∗) for convenience and introduce the Fourier
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expansions

u(x, t) =
∑
k′6K

û(k′, t) exp

(
i
2π

L
k′ · x

)
(3.1)

and similar ones for p and T ; here k′ = (k′x, k′y, k′z) = (k′1, k′2, k′3) is an integer wave

vector, k′2 = k′αk′α (using the summation convention), K = N/2 is a finite cut-off
(N being the number of grid points along each direction), and k′ 6 K means
−K 6 k′α 6 K for α = 1, 2, 3. The quantities û(k′, t), p̂(k′, t) and T̂ (k′, t) are the
Fourier-space (k′-space) representations of the corresponding quantities. Using these
expansions, and k = (2π/L)k′, we can rewrite the governing equations (2.4)–(2.6) in

Fourier space as (with û, p̂ and T̂ being functions of (k, t))

ik · û = 0, (3.2)

∂û

∂t
= −[(u(x, t) · ∇)u(x, t)]k − ikp̂− 1

Re
k2û+H ′(t)G∗T̂ ez, (3.3)

∂T̂

∂t
= −[(u(x, t) · ∇)T (x, t)]k − 1

Re Pr
k2T̂ +H(t)

d0

U0th
ĝ(r), (3.4)

where the expressions within the square brackets are convolution sums to be evalu-
ated in Fourier-space. Using the incompressibility condition (3.2), one can eliminate
pressure from equation (3.3), and replace the first two terms on the right-hand side
of (3.3) along any space direction α by (see Orszag 1971)

− i

2
Qαβγ(k)

∑
m+n=k
m,n6k

uβ(m, t)uγ(n, t), (3.5)

where

Qαβγ = kβ(δαγ − kαkγ/k2) + kγ(δαβ − kαkβ/k2), (3.6)

and δαβ is the Kronecker-delta function.
Equations (3.2)–(3.4), with the modification given by (3.5), make up the governing

equations in Fourier space. To compute the Fourier space convolution sums in
these equations, the variables are first transformed to physical space by FFTs, the
convolution sums obtained, and the results transformed back to Fourier space using
FFTs. Such an approach is computationally efficient due to the high speed of executing
FFTs. It can give rise to aliasing errors, but, as Canuto et al. (1988, p. 211) point out,
accuracy considerations do not constitute a compelling reason to eliminate aliasing
errors; we have therefore made no attempt here to dealias the computational results.

The periodic boundary conditions are automatically satisfied by choosing a Fourier
spectral representation. For integrating in time, we use a third-order-accurate Runge–
Kutta scheme to begin the computation, followed by a third-order-accurate Adams–
Bashforth scheme to continue with the time-integration. Thus the computations can
be restarted from any point in time at which data are stored.

3.1. Obtaining divergence-free initial conditions

The perturbations ∆ur given by (2.10), imposed at time t = 0, constitute a divergent
velocity field ud(x, t = 0). We can, however, construct a divergence-free field using the
Helmholtz decomposition

ud = ∇Φ+ ∇×Ψ, (3.7)
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where Φ and Ψ are scalar and vector potentials, respectively. Since

∇ · ud = ∇2Φ = ε, (3.8)

say, we have in Fourier space Φ̂(k) = −ε̂(k)/k2 for k 6= 0; it follows that the
divergence-free field is the inverse Fourier transform of

û(k, 0) =

{
ûd(k, 0)− (k · ûd)k/k2 for k 6= 0
0 for k = 0.

3.2. Validation

Beyond t = 0 the incompressibility constraint is not explicitly implemented into
the formulation or the computer code. Thus, one can expect the value of maximum
divergence in the computational domain to provide a measure of solution accuracy. In
the present calculations, the maximum divergence anywhere in the field stays bounded
to values very close to the truncation errors even at the end of the computations.
This is direct evidence that the incompressibility constraint is accurately satisfied,
and indirect evidence that the incompressible Navier–Stokes equations are being
computed correctly.

It is unnecessary to provide further evidence here on the validation, since the basic
formulation is quite well-established (see Orszag 1971), and the present code has been
validated by extensive computations earlier (e.g. Basu et al. 1992; Mathew & Basu
1997).

As the temperature differential T in the present problem arises from heat addition,
it must be essentially positive. However, small errors in computation that may result
in pockets of small negative temperature can accumulate over time into disastrous
effects in the nonlinear calculations made here since temperature is an active scalar,
and influences the flow directly (unlike passive scalars like dye concentration). To
maintain positivity of temperature, we follow a simple procedure used by Riley,
Metcalfe & Orszag (1986), which merely involves setting to zero at every time step
any small negative temperature that may arise. It has been shown by Riley et al. that
using this simple filter one is still able to get superalgebraic convergence.

In all the computations reported here (for both heated and unheated jet), we have
maintained a constant Reynolds number Re = 1600 based on quantities at time
t = 0; this Reynolds number is within the range (1360–3200) studied by Elavarasan
et al. (1995). Computations are carried out using both 643 and 1283 grids. The results
presented in § 4 contain data from simulations using both these grids, whereas in
§ 5 only the 643 grid results are used. Finally in § 6 and § 7, where the physical and
structural details of vorticity are analysed, the 1283 grid is employed. The time steps
used for computations are ∆t = 0.005 for the 643 grid, and ∆t = 0.0025 for the 1283

grid. In the heated cases, the corresponding time step is halved to resolve the smaller
scales that are found to be generated in the flow by heat addition. The time steps
chosen here for computing the evolution of either the unheated or the heated jet
are less than those required for numerical stability, as confirmed by trial simulations
using different time steps.

The computations have been carried out on an R10000-based 4-processor Silicon
Graphics Power Challenge computer. The CPU time required per step for the 643

calculations is about 1 s, whereas for the 1283 grid it is about 9 s. Computations have
been carried out up to a non-dimensional time of t = 40. Beyond this time the jet
begins to fill the computational box, and thus nearby (periodic) boxes can affect the
subsequent evolution.



Direct numerical simulation of turbulent flows with cloud-like off-source heating 207

We have used a certain default initial condition for all results presented here,
except in § 4.2 where the effects of different initial conditions will be studied. In this
default condition, which we shall call Case I, we use three streamwise modes with
wavelengths λ1 = L, λ2 = L/2, and λ4 = L/4 (see (2.10)); the amplitudes of these
modes are a1 = 0.01, a2 = 0.02 and a4 = 0.03, and the phases are identically zero.
Along the azimuthal direction we have 16 modes with equal amplitudes aθ = 0.003
and random phases generated by a pseudo-random number generator. The initial
width δ of the shear layer is L/16.

4. The unheated jet
We begin presentation of our results with those for the temporal evolution of the

unheated jet.
The initial temporal development of the unheated flow has been described elsewhere

(Basu et al. 1992; Mathew & Basu 1997), and will not be considered in detail here.
To summarize briefly, the development proceeds through the evolution of ring-like
structures in the flow in the early stages of computation (up to about non-dimensional
time t = 5). By t = 10, pairing takes place forced by the subharmonic perturbation
that had been initially put in. Around t = 15, strong streamwise structures are seen
in the flow and the ring structures develop strong azimuthal instabilities. By about
t = 20, the rings apparently break down and very fine scales emerge. At later times, the
entire flow field is filled with intermediate-scale structures with a marked streamwise
orientation. As will be shown later, the flow achieves self-similarity in computed
profiles of mean streamwise velocity and turbulence intensity by the time t = 20.

4.1. New integral scales

To obtain the radial profiles of mean streamwise velocity, turbulence intensity, etc.,
we first superimpose a cylindrical grid on top of the existing Cartesian grid. The
values of different variables at the cylindrical grid points are then obtained via
simple bilinear interpolation using the Cartesian grid values. Mean radial profiles are
computed by averaging along both azimuthal and streamwise directions. (Averaging
along the streamwise direction is consistent with the spirit of temporal simulation.)
In experiments, it is usual to take the centreline velocity at any streamwise location
as the local characteristic velocity, and the ‘half-width’ (where the mean streamwise
velocity falls to half of the value at the centreline) as the local length scale. These
quantities cannot be accurately estimated near the jet axis in the present simulations,
because at the axis the number of data points for obtaining averages is too small,
being limited to the number of grid points along the streamwise direction (64 or
128 in the present case). (Note, however, that the computed statistics improve with
increasing r, as one can average over azimuthal points as well.) Indeed, it was this
drawback that resulted in the unduly large variations (with time) of the computed
centreline velocity and half-width in the previous calculations of Narasimha & Basu
(1995). Thus, we need new characteristic local quantities that can be estimated more
accurately.

A more fundamental point is that the invariants in the temporal jet are different
from those in the spatial jet, and hence the appropriate length and velocity scales
will also be different. Thus, in a temporal simulation subject to periodic boundary
conditions, the mass flux in the flow (integrated over the computational domain)
remains constant in time, but the momentum flux drops. We propose that the
appropriate velocity and length scales in the present case (using ū(r, t) for the mean
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velocity) are therefore

ũ(t) =

∫
ū2r dr∫
ūr dr

, b̃(t) =

∫
ūr dr[∫

ū2r dr

]1/2
. (4.1)

These new scales can be quite accurately estimated, and incidentally overcome the
drawback of the conventional local scales in the present simulations.

We can similarly define a new characteristic integral turbulence intensity ũ′(t),
defined in the same way as ũ(t) except that u is replaced by the velocity fluctuations
u′; ũ′(t) serves a function similar to that of the centreline turbulence intensity in
experimental data.

4.2. Effect of initial conditions

It is necessary to investigate briefly whether the results presented here depend on
the actual initial conditions used in the simulation. For this reason, we performed
four simulations using both 643 and 1283 grids and three different initial conditions,
including Case I already defined in § 3.2. For the second initial condition (Case II),
we reduce aθ to 0.0015, and use a different set of random phases generated using
a different seed for the pseudo-random number generator. Finally, in Case III, we
maintain aθ the same as in Case I, but change the amplitudes of the three streamwise
modes to a1 = 0.005, a2 = 0.01 and a4 = 0.015 respectively; we also use different
phases given by ψ1 = 0, ψ2 = 0.5d0 and ψ4 = 0.25d0 respectively. The four simulations
performed are: (i) 1283 grid, initial conditions given by Case I, (ii) 643 grid, Case I,
(iii) 643 grid, Case II, and (iv) 643 grid, Case III. In all these cases, we compute the
evolution of the shear layers up to t = 40.

Figures 2(a) and 2(b) show the temporal evolution of b̃ and ũ respectively for the
different cases mentioned above. The velocity scale ũ appears to be insensitive to
the nature of the initial perturbations, but the width b̃ is less so. For the purpose
of the present simulations, we can assume that such dependences do not alter the
basic qualitative nature of the flows we compute. We will, nevertheless, investigate
the issues concerning different initial conditions on the evolution of circular jets at a
later time.

4.3. Similarity

As discussed previously in § 2, the present temporal simulation cannot be unambigu-
ously identified with any particular shear flow like a jet or wake. We can, however,
use the well-known similarity arguments familiar in turbulent flow (e.g. Townsend
1976; Narasimha 1990) to seek appropriate asymptotic solutions for the temporal
simulation. From the ‘Reynolds number similarity principle’ we can rule out viscosity
as a relevant parameter. From dimensional arguments the only quantity involving the
local scales ũ, b̃ that has the dimensions of time is b̃/ũ, so it follows that b̃ = cũt, where
c is a constant. If further the mass flow is an invariant because of the periodic bound-
ary conditions adopted in the simulation, it follows that b̃2ũ is a constant independent
of time, say M. We then have the similarity laws for the temporal simulation,

b̃ = (Mc)1/3 t1/3, ũ = (M/c2)1/3 t−2/3. (4.2)

These laws imply that a characteristic local Reynolds number (proportional to b̃ũ)
varies like t−1/3; in this respect the flow considered resembles an axisymmetric wake.
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Figure 2. Effect of different initial conditions in the development of the jet. (a) Variation of
jet width b̃ with time for the different initial conditions (see text for details). (b) Variation of
velocity scale ũ with respect to time for the same cases. , 1283, Case I; ———–, 643, Case I;
– – – – –, 643, Case II; – · – · –, 643, Case III .

Thus the flow simulated here starts out like a jet developing from a cylindrical shear
layer and ends up like a wake. Note that, as has been argued in the case of the
axisymmetric wake, the continuous drop in the Reynolds number should eventually
lead to laminarization; this would be an instance of what Narasimha & Sreenivasan
(1979) have called dissipative reversion, which is generally very slow. In the present
simulations, the local Reynolds number is seen to drop by about a third between
t = 20 and 40, i.e. it still remains higher than 103 at the end of the simulation; so we
may safely assume that laminarization is still far in the future indeed, and that the
results to be discussed are representative of turbulent flow.

The simulation using the 1283 grid, and initial conditions given by Case I, is
taken here as the base-line to demonstrate similarity in the radial profiles of mean
streamwise velocity and turbulence intensity. In figure 3(a) are plotted (to different
scales) the integral measure of jet width b̃3, the local velocity scale ũ−3/2, and the
normalized integral turbulence intensity ũ′/ũ. As can be seen, from about t = 20,

both b̃3 and ũ−3/2 show nearly linear growth, as predicted by the similarity arguments
presented above. The normalized integral turbulence intensity shows a roughly linear
growth (if one ignores the fluctuations) up to almost t = 20 or so, beyond which
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Figure 3. Evolution of computed length and velocity scales with time, to illustrate approach to
self-similarity. (a) present scaling: ———–, b̃3; – – – – –, ũ−3/2; – · – · –, ũ′/ũ(t); (b) classical jet

scaling: ———–, 2b̃; – – – – –, ũ−1. (c, d) Convergence history of computed similarity profiles of ū
(c) and û′ (d). The profile at t = 0 is shown by a thin solid line, and that at t = 40 by a thick solid
line. Profiles between times t = 10 and t = 30 (at intervals of 10 time units) are shown by dashed
curves with diminishing intervals (longest dashes for t = 10, shortest dashes for t = 30).

it appears to tend towards some constant value. For reasons already stated, it is
not possible to compare the values of the different quantities described here with
experimental data. Note, however, that the similarity behaviour described here is not
locally very different from that of a turbulent jet over the later part of the duration
over which the present flow is computed. As can be seen in figure 3(b), which shows
the growth of b̃ and 1/ũ with time, the behaviour during t = 20 to t = 40 does not
show any dramatic departures from linearity; qualitative comparison with laboratory
jets in the far field is therefore not unjustified.

Figure 3(c, d) shows the evolution of similarity profiles of mean streamwise velocity
ū(r, t) and the r.m.s. of the fluctuating streamwise velocity û′(r, t) respectively, both
normalized by the local velocity scale ũ(t); the radial distance is normalized by b̃(t).
The evolution is shown between time t = 0 and t = 40 at intervals of 10 non-
dimensional time units. It can be clearly seen that the profiles of both the normalized
mean streamwise velocity ū/ũ, and the normalized turbulence intensity û′/ũ attain self-
similarity within t = 20. The ū profile appears to be still evolving near the axis even
though in general it looks similar to the usual Gaussian profiles seen in experiments.
This behaviour is likely to be due to the fact that, as mentioned before, near the axis
there are not enough computational data points to obtain meaningful statistics. The
qualitative nature of the û′/ũ profile looks reasonably similar to laboratory results.
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Figure 4. Computed evolution of enstrophy in the unheated jet: ————, total enstrophy Z;
............., Zθ; – – – – –, Zz; – · – · – , Zr .

It is clear from the above discussion that the computed flow shows several basic
qualitative characteristics of a turbulent jet.

4.4. Evolution of enstrophy

The enstrophy

Z =

∫ ∫ ∫
‖ω‖2

r dr dθ dz = Zr + Zθ + Zz (4.3)

is an integral parameter describing the vorticity content in a flow; here ‖ω‖ is the
magnitude of the vorticity vector ω (thus ‖ω‖ = (ω2

r + ω2
θ + ω2

z )
1/2), and Zr , Zθ and

Zz are respectively the enstrophies of the components of vorticity along the r-, θ-
and z-directions. The computed time evolution of all four quantities from the 1283

simulation is shown in figure 4. The total enstrophy decreases while the roll-up process
is in progress (up to about t = 7), beyond which the formation of streamwise vortices
and vortex-stretching raises the total enstrophy till about t = 20; thereafter it decays
monotonically. If we look at the component enstrophies, one can see that at t = 0
nearly all of the vorticity is azimuthal (as set by the initial conditions). Between t = 5
and t = 20 there is a consistent rise in the radial and streamwise enstrophies, while
the azimuthal component shows an initial dip and subsequent rise. What is rather
interesting is how, beyond the breakdown of the ring structures around t = 20, the
component enstrophies tend towards similar values, while decreasing monotonically
all the time. This points to strong inter-component transfer during the fully turbulent
phase of the flow (beyond t = 20), leading to some kind of equipartition in the
enstrophy, with vortical structures of different kinds in different directions.

5. The heated jet
Having shown the qualitative similarity of the computed unheated jet with the

observed behaviour of turbulent jets in the laboratory, we now proceed to look at the
effect of volumetric heat addition on the growth of such a jet. As shown before, the
main parameters that affect the jet growth are Re, Pr, G∗ and g(r), the actual heating
profile used. We will, for the 643 computations presented in this section, adopt the
values Re = 1600 and Pr = 7 (for water at 20 ◦C). Heat is added to the flow only
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between the non-dimensional times t = 32 (after the flow achieves self-similarity)
and t = 34, after which no further heat addition takes place. The flow evolution is,
however, computed beyond heat addition up to t = 40. Since we will be looking
mostly at computed statistics in the present section and not the details of the flow
structure, the 643 grid is considered sufficient for the purpose.

We perform two sets of numerical experiments here. In the first set, the heat
injection profile g(r) is kept fixed, similar to that of the streamwise velocity at time
t = 32, but the parameter G∗ is assigned the values 0.01, 0.04 and 0.1 to examine
the effects of change in total quantity of heat injected (the value of Ch in all these
cases is 4.3 × 10−4). Note that the heat addition here is axisymmetric, even though
the computed jet is instantaneously non-axisymmetric at all times.

The second set of numerical experiments involves changing the actual heating
profile g(r) while keeping G∗ fixed at 0.04. We use three different heating profiles
that are similar to the computed mean streamwise velocity profiles in the unheated
jet at times t = 20, 32 and 40 respectively. Care has been taken to scale each profile
correctly so that the total amount of heat injected in all the three cases remains
the same. At this point, it is important to note certain differences in the present
computations when compared to the experiments of Bhat & Narasimha (1996). First,
the parameter G (not G∗) in our computations is analogous (but not directly relatable)
to the heat release number used to analyse the laboratory data. This is because of
difficulties in establishing quantitative connections between the spatial extent of the
heat-injection zone in the experiments and the duration of heat addition in the present
computations. Second, heat addition in the experiments being due to ohmic losses
in an electrically conducting fluid, the instantaneous distribution of heating imparted
to the fluid is unlikely to be as smooth as the near-Gaussian axisymmetric heating
profile used here; in principle the distribution in the experiments varies both in time
and in space. However, in both cases there is a bulk addition of volumetric heating
to the flow over a few eddy-turnover times, and it is this effect that we wish to study.

We now describe the results of these numerical experiments.

5.1. Effects of variation in G∗

In figure 5(a, b) we show the evolution with time (between t = 25 and t = 40) of
b̃3 and ũ−3/2 respectively for the unheated jet, along with the effects of variation in
G∗. When G∗ is increased, the jet width (in terms of b̃) falls, and ũ increases, as
has been reported by Elavarasan et al. (1995) and Bhat & Narasimha (1996). Figure
5(c, d) shows the integral turbulence intensity ũ′, respectively non-normalized and
normalized by ũ. We see that as G∗ increases, the actual ũ′ increases but its ratio to ũ
falls; i.e. ũ′ does not increase as rapidly as ũ does. These results are again consistent
with the experimental findings: Bhat & Narasimha (1996) report (see their figure 9b
and the discussion in § 4.3) that while the turbulence intensity u′ may even double
with sufficient heating, the normalized value can drop by about 35%; in the present
simulations the normalized ũ′ has fallen in some cases to about half its unheated
value.

Figure 5(e, f) shows the profiles of mean streamwise velocity ū and the r.m.s. of the
fluctuating streamwise velocity û′ in similarity variables at time t = 40, the end of our
computation. Even with large G∗, one can see that the similarity in mean streamwise
velocity is not lost. The small differences near the axis of the jet are likely to be
related to the small size of samples there, as mentioned before. Figure 5(f) shows
very clearly the fall in relative turbulence intensity as one increases G∗.

It must be stressed here that the behaviour of all the computed quantities b̃3, ũ−3/2
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Figure 5. Effect of variation of heat release parameter G∗ on the time evolution of: (a) b̃3, (b) ũ−3/2,
(c) ũ′, (d) ũ′/ũ, and on the similarity profiles at time t = 40 of: (e) mean streamwise velocity ū, (f)
r.m.s. of the fluctuating streamwise velocity û′. ————, G∗ = 0 (unheated); ............., G∗ = 0.01;
– – – – –, G∗ = 0.04; – · – · –, G∗ = 0.1.

and ũ′ seen here is remarkably consistent with that seen for the corresponding relevant
quantities (half-width, centreline mean streamwise velocity and centreline turbulence
intensity) in the available experimental data (cf. figure 9, Bhat & Narasimha 1996).
Even the rise in normalized ũ′ at late times for high values of G∗ is similar to that seen
for normalized centreline turbulence intensity at large distances in the experiments.
This greatly enhances our confidence in the relevence of the present computations to
understanding the effect of heat addition in turbulent flows.

Figure 6(a–d) shows the distribution of vorticity magnitude ‖ω‖ in the (y, z)-plane
(passing through the axis of the jet) at t = 40 for G∗ = 0 (unheated), 0.01, 0.04 and 0.1
respectively. For low values of G∗ there is not much change in vorticity distribution,
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(a) (b)

(c) (d )

Figure 6. Effect of variation of heat release parameter G∗ on the distribution of vorticity magnitude
‖ω‖ over the (y, z)-plane passing through the axis of the jet at t = 40: (a) G∗ = 0, (b) G∗ = 0.01,
(c) G∗ = 0.04, (d) G∗ = 0.1. The contour levels are drawn at intervals of 0.5 starting from 0.5.

except that the entire field is advected slightly faster. But at larger G∗ we begin to
see the emergence of small-scale structures and an increase in the strength of the
vorticity, presumably brought about by larger gradients in temperature, as we shall
examine in more detail in § 6 below.

5.2. Effect of changes in heat injection profile

The three different heat injection profiles used here, similar to the mean streamwise
velocity profiles at times t = 20, 32 and 40, will be called ‘narrow’, ‘moderate’ and
‘wide’ respectively. In all cases, Re = 1600, G∗ = 0.04, and the heating profiles are
scaled to achieve equal amount of total heat injection. Figure 7(a) shows that these
heating profiles can alter the growth rate of the jet. A narrow profile decreases the
growth rate, whereas a wide profile enhances it.

Figure 7(b) shows that ũ, on the other hand, is not related to the heat injection
profile, but to the parameter G∗ or the total amount of heat injected (which was kept
constant in this case).

Figure 7(c, d) shows that the narrow heating profile causes more intense velocity
fluctuations. It is important to note, however, that the fall in normalized integral
turbulence intensity appears to be of the same order in all three cases. Interestingly,
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Figure 7. Effect of heating profile on the time evolution of (a) b̃3, (b) ũ−3/2, (c) ũ′, (d) ũ′/ũ, and on
the similarity profiles at time t = 40 of (e) mean streamwise velocity ū, (f) r.m.s. of the fluctuating
streamwise velocity û′: ————, unheated jet; ............., narrow heating profile; – – – – –, moderate
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the integral turbulence intensity for the narrow heating profile (figure 7d) picks up
after the heat injection is stopped (beyond t = 34), exactly as in the experimental
data for centreline turbulence intensity (see figure 9 of Bhat & Narasimha 1996). This
behaviour is related to the large temperature gradients caused by the narrow heating
profile; the temperature gradients continue to work at producing small-scale vorticity
fluctuations even after heat injection is stopped, as we shall discuss in more detail in
the next section.

Finally, figure 7(e, f) shows the profiles of the streamwise mean velocity ū and the
r.m.s. of the fluctuating streamwise velocity û′ in similarity variables at time t = 40
for different heat injection profiles. As we can see, the mean velocity profiles maintain
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Figure 8. Effect of variation of heat injection profile on the distribution of vorticity magnitude ‖ω‖
over the (y, z)-plane passing through the axis of the jet at t = 40: (a) unheated jet, and different
heating profiles: (b) narrow, (c) moderate, (d) wide. The contour levels are drawn at intervals of 0.5
starting from 0.5.

similarity to a large extent. Suppression in (normalized) û′ occurs only for moderate
and wide heating profiles, whereas for the narrow heating profile û′ again picks up at
later times and its radial distribution at time t = 40 is close to that of the unheated
jet.

Examining the evolution of the flow quantities displayed in figures 5 and 7,
one question that arises is whether an integral method can explain the results of
the simulations. This question was considered by Bhat & Narasimha (1996) with
regard to their experiments. To close the integral equations of mass, momentum and
energy conservation, one needs to make a suitable entrainment assumption. Bhat &
Narasimha show that the usual assumption of constant entrainment coefficient yields
results that do not agree with observation. They attribute this failure to the structural
changes taking place in the flow; at any rate it is clear that the development of more
successful integral models for flows with heat addition of the type considered here
demands the formulation of new hypotheses for entrainment. Such a study is outside
the scope of the present paper, and so will not be considered here.

Figure 8(a–d) shows the distributions of vorticity magnitude ‖ω‖ resulting from
different heat injection profiles. Production of small-scale vorticity is most marked
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with the narrow heating profile, as already suggested by the turbulence intensity
profiles described before, but with all three heating profiles it is clear that vorticity
levels have gone up dramatically. The low-vorticity regions seen in figure 8(a) are
filled up with heating, the ‘edges’ of the flow look much less convoluted, and the
engulfment of ambient irrotational fluid seems very much weaker.

All of these features are in agreement with observations: thus, heating produces
dramatic changes in the development of the mean parameters and the vorticity field
in the jet.

6. Effect of heating on vorticity
The present simulations show that heating exerts a dramatic influence on the

vorticity field. In order to examine in detail this effect, which appears to hold the key
to understanding the effect of heating on the turbulence, we look specifically at two
simulations based on the 1283 grid. One is the usual unheated jet whose evolution,
starting with the initial condition described previously as Case I, has been computed
up to non-dimensional time t = 40. In the other case, heat is applied between the
times t = 25 and t = 32 and the flow evolution is computed up to t = 35. The relevant
parameters for the computations are Re = 1600, Pr = 7, G∗ = 0.04. The time step
used for computing the evolution of the unheated jet is ∆t = 0.0025, whereas for the
heated jet it has been reduced to ∆t = 0.00125; both values are within the restrictions
imposed by stability considerations, as discussed before.

To appreciate how heating affects vorticity, we first derive the equations governing
the vorticity in the present flow.

6.1. The vorticity equations

Taking the curl of equation (2.2), we obtain

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u− ν∇2ω = αg× ∇T , (6.1)

where the terms on the left are familiar from classical, incompressible flow theory.
The term on the right is a source of vorticity; it arises from the baroclinic torque
∇p × ∇ρ when the pressure gradient ∇p is replaced by its value in the hydrostatic
approximation, and the density gradient ∇ρ by the temperature gradient, to which it
is proportional in the approximation we are using.

Note that although gravity is a conservative force, vorticity can be created under
the Boussinesq approximation. As the acceleration g acts vertically, it is clear from
(6.1) that only the horizontal gradients of temperature are relevant, and only the
horizontal components of the vorticity (comprising ωr and ωθ) are directly affected. It
is easily verified (see figure 9) that if the (mean) temperature drops radially outward
(as it does in the heated jet), the initial mean azimuthal vorticity is enhanced due to
the heating, i.e. the shear in the jet increases.

By decomposing the vorticity into a mean ω and a fluctuation ω′, we can use
standard methods to derive equations for each of them. It is easily seen that the mean
baroclinic generation terms are

αg

r

∂T

∂θ
, −αg∂T

∂r
, 0

for ωr , ωθ and ωz respectively.
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Figure 9. Schematic of the jet and the heating showing the direction of the baroclinic torque. As
the jet is hottest near the axis, temperature falls away on either side, leading to the vectors ∇T and
g× ∇T having the directions shown, on either side of the axis.

6.2. Vorticity components

The effect of heating on the azimuthal, streamwise and radial components of the
vorticity field is shown in figure 10. The vorticity distributions at the same non-
dimensional time t = 35 are plotted side-by-side for the unheated and heated case for
each component. The positive-valued contours are shown using solid lines, whereas
the negative-valued ones are in dotted lines. For the azimuthal and radial components,
there is an apparent abrupt change of sign at the axis, but this is a consequence of
the definition of sign in the cylindrical coordinate system. The Cartesian components
of the vorticity do not change sign across the centreline; the implication is that there
is no toroidal or radial organization of the vorticity near the axis, especially in the
heated jet.

From figure 10(b, d, f) we see that the nearly irrotational regions evident within
the unheated jet (figure 10(a, c, e)) are filled with strong vorticity due to heating.
Furthermore, there is considerable fine-scale vortical activity, and the ‘edges’ of the
flow are less convoluted. All of these features are completely consistent with the
experimental findings. What is perhaps remarkable is that all three components of
vorticity increase dramatically. In general, the vorticity field with heating appears to
possess much less organization than the unheated flow.

At this stage it is necessary to discuss the role of coherent structures in the flow.
Experimentally these have often been inferred on the basis of flow visualization with
passive tracers, but the availability of the vorticity field in the simulations provides
us with vastly greater information, which we proceed to analyse.

6.3. Coherent structures

There have been several studies on coherent structures in jet flows (Tso & Hussain
1989; Mungal & Hollingsworth 1989; Dahm & Dimotakis 1990; Yoda, Hesselink &
Mungal 1994 among others). In general it is accepted that the nature of any coherent
structure that may be present in jets is much less clear than in mixing layers. Fiedler
(1987) estimates that while the energy in the coherent motion in mixing layers is as
much as 20%, that in the far jet is only 10%. The reason may partly be that the jet is
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Figure 10. Streamwise sections (in the (y, z)-plane passing through the axis of the jet) of different
components of vorticity in the unheated and heated jets at time t = 35. Negative contours are
shown using dotted lines, starting from −0.5 in steps of −0.5; positive contours are shown in solid
lines, in steps of 0.5 starting from 0.5. (a, b) Azimuthal; (c, d) streamwise; (e, f) radial.

not dominated by a single instability mode: both axisymmetric and helical modes are
possible, although the former is not amplified whereas the latter is. Tso & Hussain
inferred, from correlation measurements, the presence of vortex rings and single and
double helices: it is possible that the flow keeps switching between these modes. Dahm
& Dimotakis reported, from flow visualization studies using dye in a liquid jet, that
there was an ordered sequence of large arrow-head-shaped regions within which the



220 A. J. Basu and R. Narasimha

concentration showed little variation; while these were largely axisymmetric, there
were indications of more nearly spiral modes as well.

The jet is thus both dynamically and topologically complex, as Mungal & Hollings-
worth point out. It is not our objective to discuss in depth the question of coherent
structures in jets in general (we shall do this elsewhere: see Siddhartha et al. 1999),
but rather to note the effect of heating, taking advantage of the vorticity field that
the present numerical simulation provides.

Now, some evidence of structures can in fact be seen in the vorticity fields already
displayed. Thus, the azimuthal vorticity contours of the unheated jet, shown in figure
10(a, b), do suggest an arrow-head-shaped large-scale structure spanning the width of
the flow, but recognition is rendered much easier if the development of the flow in
time can be examined. In order to enable this, figure 11 shows the absolute magnitude
of the vorticity ‖ω‖ in the (y, z)-plane at the late times, from t = 25 to t = 35 in steps
of 2 time units. At early times, the jet is dominated by large-scale ring-like structures
that show strong azimuthal instability and undergo breakdown by about t = 20 (not
shown here). Around t = 27 the edge of the jet begins to be highly convoluted,
and certain ‘lumps’ or ‘structures’ can be recognized. The recognition is aided if we
track the structures in time, as has been done in experimental studies (Mungal &
Hollingsworth 1989; Dahm & Dimotakis 1990): see in particular the regions enclosed
within the sloping line boundaries in the figure, from t = 27 onwards. We can clearly
identify structure A as it moves downstream, from its nearly central position at t = 27
to the top of the computational box by t = 35 (the computational domain being
periodic, it essentially reappears from the lower side of the box as structure C). The
shape and motion of this structure is not always symmetric; thus a pronounced tilt
develops at its base at t = 33. As structure A is moving out of the box, structure
B, which (in hindsight) can already be recognized at t = 27, moves to centre-stage
around t = 35, while structure C is creeping up from the bottom. It is seen that while
the structures A and B are not identical, they are very similar in shape: both are
generally arrow-head shaped, very much like those reported in the experiments, and
take about 12 time units to advect half-way down the box.

Re-examining figure 10 in the light of the above discussion, we see that the
organization of the vorticity is most strongly seen in the azimuthal component ωθ
(figure 10a). The structure in the middle of the box here corresponds to structure B
in figure 11. First, it is seen that the structure possesses a toroidal base, as ωθ has
the same sign at either end of the diameter. On top of this is a conical sheath of
vorticity of the same sign. It is remarkable that there is so little azimuthal vorticity
of the opposite sign anywhere within the structure. The picture that emerges is of
organization of azimuthal vorticity into a thick toroidal base supporting a sheath
converging to a conical tip. This is consistent with experimental results except that
we do not find, at least till t = 35 in the unheated jet, the kind of penetration of
one structure into the next that is suggested by Mungal & Hollingsworth (1989) and
Yoda et al. (1994).

In the heated jet (also shown in figure 11), we can trace structure A as it moves up
from the middle of the box towards the top end of the computational domain even
after the injection of heat commences at t = 25. At t = 35 the base of the structure
can be barely identified at the top. Note that such identification is possible only by
tracking the trajectory of the structure; in isolation, it would be virtually impossible
to do so.

Immediately following structure A is structure B, whose upper tip can already be
discerned at t = 25. At t = 33 it can still be recognized, but comparison with the
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Figure 11. Streamwise sections (in the (y, z)-plane passing through the axis of the jet) of vorticity magnitude ‖ω‖ for both unheated (upper row)
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corresponding panel in the unheated jet shows two major differences. (i) The vorticity
magnitudes are much higher: while they decay with time in the unheated jet, they
are enhanced by buoyancy in the heated jet. (ii) At t = 35 the structure is difficult
to recognize, in particular because high values of ‖ω‖ occur not only towards the
edges of the jet (as in the unheated case), but also in the core. At t = 35, structures
of the kind seen in the unheated jet cannot be recognized, and high-‖ω‖ regions are
distributed intermittently throughout the jet – cross-stream as well as streamwise. In
particular, it will be noted that the kind of large-scale ‘bulginess’ that can be seen
in the unheated jet can no longer be discerned in the heated jet by t = 35, although
smaller scale excursions are present.

Some further light is thrown on the subject by re-considering the ωθ field previously
displayed in figure 10(a, b). The field at t = 35 is a strong contrast to that in the
unheated jet: positive azimuthal vorticity is no longer confined largely to the edges of
the jet. One way of interpreting the field at t = 35 is that it shows that the structure B
of the unheated jet has penetrated deep into structure A, introducing strong ωθ into
the core of the jet. Such penetration could occur due to the acceleration of the core
that takes place when heat in injected.

In conclusion, we may say that the simulations show certain structures that, at
least in overall shape and size, strongly resemble those that have been observed in
the experiments. With heating, the structures persevere for some time, but by the
end of the simulation they are considerably distorted, if only because acceleration
due to buoyancy makes the structures telescope into each other, considerably altering
whatever organization may have been present in the flow and enhancing the magnitude
of vorticity. In particular, regions of very high azimuthal vorticity are now found all
across the jet, rather than towards the edges of the jet as in the unheated case.
Injection of heat certainly seems to reduce the large-scale bulges characteristic of the
unheated jet.

More definitive statements on organized motion in the jet cannot be made at
present, as the simulations provide only a very small ensemble of structures in the
flow.

6.4. Enstrophy

To see quantitatively how the vorticity increases due to heating, we examine the total
enstrophy, and also the enstrophies corresponding to the azimuthal, streamwise and
radial components of vorticity. Computed values are shown using a linear-log scale in
figure 12. In the absence of heating, the total as well as the component enstrophies all
fall beyond time t = 25. When heat is applied, there is a virtually exponential rise of
the entrophies after some time. At t = 35, the enstrophies are one order of magnitude
higher with heating than without. Although all three components are comparable,
the azimuthal enstrophy is higher than the others by some 10%. This is consistent
with equation (6.1) and the fact that ∂T/∂r is the main contributor from the thermal
field to mean vorticity generation.

6.5. Spectra

We have computed the spectra of the three vorticity components at time t = 35
for both the unheated and heated jets. These are shown in figure 13. The heated
jet has higher energy in all modes, but the interesting thing to note is that there
appears to be a preferential amplification at the higher wavenumbers. Thus, while the
increase in enstrophy is about a decade at low wavenumbers, it is 3–4 decades at the
highest wavenumbers. As vorticity generation depends on the temperature gradient,
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Figure 12. Comparison of evolution of enstrophy in the heated (shown using bold lines)
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Figure 13. Comparison of computed spectra of different components of vorticity for the heated and
unheated jets: (a) ωθ , (b) ωz , (c) ωr . The spectra are plotted on log-log scales. ———–, Unheated
jet: – – – – –, Heated jet.

there is an additional weighting at the higher wavenumbers due to the derivative in
the source term in (6.1). This can be clearly seen if one transforms (6.1) to Fourier
space; the source term in the equation then transforms into the Fourier coefficient of
temperature multiplied by wavenumber. This means that the growth rate of vorticity
scales with wavenumber, thus resulting in preferential amplification of vorticity at
smaller scales (higher wavenumbers).

6.6. Radial distribution of vorticity fluctuations

Figure 14 shows the radial profile of the r.m.s. vorticity fluctuations at t = 25, 30 and
35, representing conditions before, during and immediately after heat injection. The
large increases in vorticity fluctuations on heating are evident. However, while there
is a relatively smooth rise in ω̂′r across the flow, ω̂′θ shows a sharper peak at r ' 0.7,
and ω̂′z is the sharpest of all, with the peak at r ' 0.7 to 0.9; it is interesting that
there is such a concentration of streamwise vorticity at this location. It is presumably
this peak that is responsible for the strong expulsive motions seen in the entraining
velocity field (see below).
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7. The entraining velocity field
A major question concerning the development of jet flow subjected to heating is

the effect on entrainment. Now because of the periodic boundary conditions imposed
on the computational domain in the present simulation, the net entrainment over
the domain has to vanish. Nevertheless, as we shall see below, considerable insight
into the problem can be obtained by examining what we shall call the ‘entraining
velocity field’, which displays velocity vectors in the ambient fluid in the immediate
neighbourhood surrounding the jet, i.e. where the instantaneous vorticity has fallen
to sufficiently low values (< 0.5).

Figure 15 shows the computed entraining velocity field at the widest transverse
cross-section at t = 35 in the heated and unheated jets. (This corresponds to looking
at the flow in the plane of a cross-section of the spatially developing jet through the
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(a) Unheated jet

(b) Heated jet

Figure 15. Comparison of computed entraining velocity fields at the widest transverse cross-section
of the (a) unheated and (b) heated jet at time t = 35. The contours of streamwise vorticity, at
intervals of 0.5, are shown using dotted lines for negative values and solid lines for positive values.
Contour for level 0 is not shown.

base of a structure of the kind seen in figure 11.) The figure shows velocity vectors in
the ambient fluid, and contours of streamwise vorticity within the jet.

The enormous increase in vorticity due to heating is once again displayed, but
it will be noted that there are striking differences in the entraining velocity field in
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the two cases. In the unheated case, the dominant motion is inward. The induced
velocities in the heated flow are much higher. The chief difference however is that
the dominant motion (certainly at the transverse section shown) now appears to be
outward: there is a considerable expulsion of fluid from the vortical core of the flow.
These expulsions are highly localized, and are clearly due to vorticity on a scale that is
between a fifth and a tenth of the total width of the flow. The strength and direction
of the motion in the horizontal plane suggests that it is due to streamwise vortex
pairs. Although much more detailed analysis is required before we can be sure, we
speculate that the enhancement of streamwise vorticity, due to vortex stretching and
transfer from other components generated by the baroclinic torque, results in intense
small-scale vortex dipoles that tend to expel core fluid into the ambient.

A word of caution is in order at this point: the scenario in figure 15(b) is typical of
only certain transverse sections of the heated jet. There are obviously other stations
where the mass flow across the section as a whole is inward, the present flow being
constrained by periodic boundary conditions, as mentioned before. However, at no
section is the inward motion found to be locally as strong as the outward motion seen
at the transverse section of figure 15(b). Thus, while the net entrainment across the
computational box remains zero because of the limitations of boundary conditions
(it is worth noting that in this respect the simulation resembles a confined jet, where
too the net entrainment must vanish because of recirculation), there appears to be a
qualitative difference in the entraining velocity field near the jet between the unheated
and heated cases.

In summary, we speculate that the lower entrainment observed in the experiments
when heat is injected could be the consequence of two factors: the enhancement of
local streamwise vorticity due to flow acceleration on heating, and a disruption and
redistribution of organized azimuthal vorticity across the cross-section, for both of
which the present simulations provide some support.

8. Conclusion
We have made a large number of temporal simulations of a jet that is subjected to

local volumetric heating. Although a precise comparison with experiment is not pos-
sible, there is remarkable qualitative agreement between simulation and measurement
on the effect of heating on the gross parameters of the flow. Thus, heating accelerates
the flow and narrows the jet; absolute values of turbulence intensity increase but
not as rapidly as the mean velocities, so normalized turbulence intensities are lower.
It is found that the amount of heat injected, and its spatial distribution, affect the
development of the flow. The strongest effects are seen for higher amount of heat
injection and for narrower heating profiles.

We have shown that heating leads to dramatic increases in the vorticity and its
gradients in the flow, and to striking differences in the flow characteristics. Apart
from large increases in the strengths of all components of the vorticity, the coherent
structure in the jet is considerably distorted and even disrupted. At the same time,
due in part to vortex stretching induced by the acceleration of the flow due to
buoyancy, the streamwise vortices become intense, and appear to be responsible for
strong expulsive motions in the immediate ambient neighbourhood of the core flow,
especially in the plane of the base of what would have been a coherent structure in
the jet. On the whole, there appear to be dramatic changes in the entraining velocity
field close to the jet.
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